Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Ali Riza Ekti
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Josh Michener
- Kuntal De
- Kyle Kelley
- Raymond Borges Hink
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Aaron Werth
- Aaron Wilson
- Alex Walters
- Anton Ievlev
- Arpan Biswas
- Austin Carroll
- Brian Sanders
- Burak Ozpineci
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Gary Hahn
- Gerald Tuskan
- Gerd Duscher
- Ilenne Del Valle Kessra
- Isaac Sikkema
- Isabelle Snyder
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Joseph Olatt
- Kunal Mondal
- Kyle Davis
- Liam Collins
- Liangyu Qian
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Mingyan Li
- Mostak Mohammad
- Nandhini Ashok
- Neus Domingo Marimon
- Nils Stenvig
- Olga S Ovchinnikova
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Paul Abraham
- Peter L Fuhr
- Sai Mani Prudhvi Valleti
- Sam Hollifield
- Serena Chen
- Stephen Jesse
- Sumner Harris
- Utkarsh Pratiush
- Vincent Paquit
- Yang Liu
- Yarom Polsky
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.