Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Adam M Guss
- Josh Michener
- Edgar Lara-Curzio
- Liangyu Qian
- Ying Yang
- Adam Willoughby
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Bruce A Pint
- Carrie Eckert
- Daniel Jacobson
- Eric Wolfe
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Mike Zach
- Rishi Pillai
- Serena Chen
- Steven J Zinkle
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Yanli Wang
- Yutai Kato
- Alex Walters
- Alice Perrin
- Andrew F May
- Annetta Burger
- Ben Garrison
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Sanders
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Charlie Cook
- Chris Masuo
- Christopher Hershey
- Christopher Ledford
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Frederic Vautard
- Gautam Malviya Thakur
- Gerald Tuskan
- Hsin Wang
- Ilenne Del Valle Kessra
- James Gaboardi
- James Klett
- Jay D Huenemann
- Jeffrey Einkauf
- Jennifer M Pyles
- Jerry Parks
- Jesse McGaha
- Jiheon Jun
- Joanna Tannous
- John Lindahl
- Justin Griswold
- Kevin Sparks
- Kyle Davis
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Nandhini Ashok
- Nedim Cinbiz
- Nidia Gallego
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Paul Abraham
- Priyanshi Agrawal
- Ryan Dehoff
- Sandra Davern
- Shajjad Chowdhury
- Tim Graening Seibert
- Todd Thomas
- Tolga Aytug
- Tony Beard
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- William Alexander
- Xiang Chen
- Xiuling Nie
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Yong Chae Lim
- Zhili Feng

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.