Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Adam M Guss
- Josh Michener
- Liangyu Qian
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Blane Fillingim
- Brian Post
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Lauren Heinrich
- Peeyush Nandwana
- Serena Chen
- Sudarsanam Babu
- Thomas Feldhausen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Yousub Lee
- Alexander I Wiechert
- Alex Walters
- Brian Sanders
- Chris Masuo
- Clay Leach
- Costas Tsouris
- Debangshu Mukherjee
- Debjani Pal
- Gerald Tuskan
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jerry Parks
- Joanna Tannous
- Kyle Davis
- Md Inzamam Ul Haque
- Nandhini Ashok
- Olga S Ovchinnikova
- Paul Abraham
- Radu Custelcean
- Ramanan Sankaran
- Vimal Ramanuj
- Vincent Paquit
- Wenjun Ge
- William Alexander
- Yang Liu
- Yasemin Kaygusuz

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

This technology can activate gene expression in a time- and dose-dependent manner in the thermophilic bacterium Clostridium thermocellum. This system will mediate inducible gene expression for strain engineering in C.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

Orphan bHLH enhances plant biomass gain. The orphan bHLH gene has an exclusive nuclear subcellular localization with a transcriptional activator activity.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).