Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Chris Tyler
- Adam M Guss
- Justin West
- Ritin Mathews
- Kyle Kelley
- Rama K Vasudevan
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Josh Michener
- Kuntal De
- Scott Smith
- Sergei V Kalinin
- Stephen Jesse
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Akash Jag Prasad
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Austin Carroll
- Bogdan Dryzhakov
- Brian Gibson
- Brian Post
- Brian Sanders
- Calen Kimmell
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Emma Betters
- Gerald Tuskan
- Greg Corson
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jamieson Brechtl
- Jay D Huenemann
- Jeff Foster
- Jerry Parks
- Jesse Heineman
- Jewook Park
- Joanna Tannous
- John F Cahill
- John Potter
- Josh B Harbin
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kyle Davis
- Liam Collins
- Liangyu Qian
- Marti Checa Nualart
- Maxim A Ziatdinov
- Nandhini Ashok
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Paul Abraham
- Saban Hus
- Serena Chen
- Steven Randolph
- Tony L Schmitz
- Vincent Paquit
- Vladimir Orlyanchik
- Yang Liu
- Yasemin Kaygusuz
- Yongtao Liu

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.