Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Information Technology Services Directorate (3)
Researcher
- Srikanth Yoginath
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- James J Nutaro
- Philip Bingham
- Philip Boudreaux
- Pratishtha Shukla
- Ryan Dehoff
- Stephen M Killough
- Sudip Seal
- Vincent Paquit
- Ali Passian
- Annetta Burger
- Bryan Maldonado Puente
- Carter Christopher
- Chance C Brown
- Corey Cooke
- Debraj De
- Gautam Malviya Thakur
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Joel Asiamah
- Joel Dawson
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark M Root
- Mark Provo II
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Pablo Moriano Salazar
- Peter Wang
- Rob Root
- Ryan Kerekes
- Sally Ghanem
- Sam Hollifield
- Todd Thomas
- Varisara Tansakul
- Xiuling Nie

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).