Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Srikanth Yoginath
- Tomonori Saito
- David Olvera Trejo
- Ethan Self
- J.R. R Matheson
- James J Nutaro
- Jaswinder Sharma
- Jaydeep Karandikar
- Pratishtha Shukla
- Robert Sacci
- Scott Smith
- Sergiy Kalnaus
- Sudip Seal
- Akash Jag Prasad
- Alexey Serov
- Ali Passian
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Brian Gibson
- Brian Post
- Calen Kimmell
- Chanho Kim
- Emma Betters
- Georgios Polyzos
- Greg Corson
- Harper Jordan
- Ilias Belharouak
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Josh B Harbin
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Pablo Moriano Salazar
- Tony L Schmitz
- Varisara Tansakul
- Vera Bocharova
- Vladimir Orlyanchik
- Xiang Lyu

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.