Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Srikanth Yoginath
- Ethan Self
- James J Nutaro
- Jaswinder Sharma
- Pratishtha Shukla
- Robert Sacci
- Sergiy Kalnaus
- Sudip Seal
- Alexey Serov
- Ali Passian
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Chanho Kim
- Diana E Hun
- Easwaran Krishnan
- Georgios Polyzos
- Harper Jordan
- Ilias Belharouak
- James Manley
- Jamieson Brechtl
- Joel Asiamah
- Joel Dawson
- Joe Rendall
- Jun Yang
- Karen Cortes Guzman
- Kashif Nawaz
- Khryslyn G Araño
- Kuma Sumathipala
- Logan Kearney
- Matthew S Chambers
- Mengjia Tang
- Michael Toomey
- Muneeshwaran Murugan
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Pablo Moriano Salazar
- Varisara Tansakul
- Vera Bocharova
- Xiang Lyu
- Zoriana Demchuk

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.