Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Srikanth Yoginath
- Edgar Lara-Curzio
- Ilja Popovs
- James J Nutaro
- Li-Qi Qiu
- Pratishtha Shukla
- Saurabh Prakash Pethe
- Sudip Seal
- Tolga Aytug
- Tomonori Saito
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Ali Passian
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Diana E Hun
- Easwaran Krishnan
- Eric Wolfe
- Frederic Vautard
- Harper Jordan
- James Manley
- Jamieson Brechtl
- Jayanthi Kumar
- Joel Asiamah
- Joel Dawson
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kaustubh Mungale
- Kuma Sumathipala
- Meghan Lamm
- Mengjia Tang
- Muneeshwaran Murugan
- Nageswara Rao
- Nance Ericson
- Nidia Gallego
- Pablo Moriano Salazar
- Phillip Halstenberg
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Varisara Tansakul
- Vlastimil Kunc
- Zoriana Demchuk

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.