Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Diana E Hun
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Srikanth Yoginath
- Bryan Maldonado Puente
- Edgar Lara-Curzio
- Ilja Popovs
- James J Nutaro
- Li-Qi Qiu
- Mahabir Bhandari
- Nolan Hayes
- Pratishtha Shukla
- Saurabh Prakash Pethe
- Sudip Seal
- Tolga Aytug
- Uday Vaidya
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Ahmed Hassen
- Alexei P Sokolov
- Ali Passian
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Catalin Gainaru
- Charles D Ottinger
- Eric Wolfe
- Frederic Vautard
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Jayanthi Kumar
- Joel Asiamah
- Joel Dawson
- Karen Cortes Guzman
- Kaustubh Mungale
- Kuma Sumathipala
- Mark M Root
- Meghan Lamm
- Mengjia Tang
- Nageswara Rao
- Nance Ericson
- Natasha Ghezawi
- Nidia Gallego
- Pablo Moriano Salazar
- Peter Wang
- Phillip Halstenberg
- Santa Jansone-Popova
- Shajjad Chowdhury
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Subhamay Pramanik
- Tao Hong
- Varisara Tansakul
- Vlastimil Kunc
- Zhenglai Shen

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.