Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Rafal Wojda
- Vipin Kumar
- Brian Post
- David Nuttall
- Prasad Kandula
- Soydan Ozcan
- Srikanth Yoginath
- Dan Coughlin
- James J Nutaro
- Jim Tobin
- Pratishtha Shukla
- Pum Kim
- Segun Isaac Talabi
- Sudip Seal
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Vandana Rallabandi
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Ali Passian
- Brittany Rodriguez
- Christopher Fancher
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- Harper Jordan
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marcio Magri Kimpara
- Merlin Theodore
- Mostak Mohammad
- Nadim Hmeidat
- Nance Ericson
- Oluwafemi Oyedeji
- Omer Onar
- Pablo Moriano Salazar
- Praveen Kumar
- Ryan Ogle
- Sana Elyas
- Shajjad Chowdhury
- Steve Bullock
- Subhabrata Saha
- Subho Mukherjee
- Sudarsanam Babu
- Suman Debnath
- Thomas Feldhausen
- Varisara Tansakul
- Xianhui Zhao

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.