Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Brian Post
- David Nuttall
- Singanallur Venkatakrishnan
- Soydan Ozcan
- Srikanth Yoginath
- Amir K Ziabari
- Dan Coughlin
- Diana E Hun
- James J Nutaro
- Jim Tobin
- Philip Bingham
- Philip Boudreaux
- Pratishtha Shukla
- Pum Kim
- Ryan Dehoff
- Segun Isaac Talabi
- Stephen M Killough
- Sudip Seal
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Vincent Paquit
- Adam Stevens
- Alex Roschli
- Ali Passian
- Brittany Rodriguez
- Bryan Maldonado Puente
- Corey Cooke
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Gina Accawi
- Gurneesh Jatana
- Halil Tekinalp
- Harper Jordan
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mark M Root
- Merlin Theodore
- Michael Kirka
- Nadim Hmeidat
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Pablo Moriano Salazar
- Peter Wang
- Ryan Kerekes
- Ryan Ogle
- Sally Ghanem
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Varisara Tansakul
- Xianhui Zhao

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.