Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Srikanth Yoginath
- Hongbin Sun
- James A Haynes
- James J Nutaro
- Prashant Jain
- Pratishtha Shukla
- Ryan Dehoff
- Sudip Seal
- Sumit Bahl
- Adam Stevens
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Brian Post
- Christopher Fancher
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Ian Greenquist
- Ilias Belharouak
- Jay Reynolds
- Jeff Brookins
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Nance Ericson
- Nate See
- Nicholas Richter
- Nithin Panicker
- Pablo Moriano Salazar
- Peeyush Nandwana
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Roger G Miller
- Ruhul Amin
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Varisara Tansakul
- Vishaldeep Sharma
- Vittorio Badalassi
- William Peter
- Ying Yang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and