Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Amir K Ziabari
- Diana E Hun
- James J Nutaro
- Philip Bingham
- Philip Boudreaux
- Pratishtha Shukla
- Ryan Dehoff
- Stephen M Killough
- Sudip Seal
- Vincent Paquit
- Ali Passian
- Bryan Maldonado Puente
- Christopher Hobbs
- Corey Cooke
- Eddie Lopez Honorato
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- Mark M Root
- Matt Kurley III
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Pablo Moriano Salazar
- Peter Wang
- Rodney D Hunt
- Ryan Heldt
- Ryan Kerekes
- Sally Ghanem
- Tyler Gerczak
- Varisara Tansakul

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).