Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Srikanth Yoginath
- James J Nutaro
- Pratishtha Shukla
- Sudip Seal
- Ali Passian
- Ben Lamm
- Beth L Armstrong
- Bogdan Dryzhakov
- Bruce A Pint
- Christopher Rouleau
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Ilia N Ivanov
- Ivan Vlassiouk
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Kyle Kelley
- Meghan Lamm
- Mina Yoon
- Nance Ericson
- Pablo Moriano Salazar
- Radu Custelcean
- Shajjad Chowdhury
- Steven J Zinkle
- Steven Randolph
- Tim Graening Seibert
- Tolga Aytug
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yutai Kato

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.