Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Srikanth Yoginath
- Blane Fillingim
- Brian Post
- James J Nutaro
- Lauren Heinrich
- Mike Zach
- Peeyush Nandwana
- Pratishtha Shukla
- Sudarsanam Babu
- Sudip Seal
- Thomas Feldhausen
- Yousub Lee
- Alexander I Wiechert
- Ali Passian
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debangshu Mukherjee
- Debjani Pal
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Md Inzamam Ul Haque
- Nance Ericson
- Nedim Cinbiz
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Padhraic L Mulligan
- Radu Custelcean
- Ramanan Sankaran
- Sandra Davern
- Tony Beard
- Varisara Tansakul
- Vimal Ramanuj
- Wenjun Ge

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.