Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Srikanth Yoginath
- Blane Fillingim
- Brian Post
- James J Nutaro
- Kyle Kelley
- Lauren Heinrich
- Olga S Ovchinnikova
- Peeyush Nandwana
- Pratishtha Shukla
- Sudarsanam Babu
- Sudip Seal
- Thomas Feldhausen
- Yousub Lee
- Alexander I Wiechert
- Ali Passian
- Anton Ievlev
- Arpan Biswas
- Costas Tsouris
- Debangshu Mukherjee
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Nance Ericson
- Neus Domingo Marimon
- Pablo Moriano Salazar
- Radu Custelcean
- Ramanan Sankaran
- Sai Mani Prudhvi Valleti
- Stephen Jesse
- Sumner Harris
- Utkarsh Pratiush
- Varisara Tansakul
- Vimal Ramanuj
- Wenjun Ge

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.