Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Adam M Guss
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Srikanth Yoginath
- Chad Steed
- Edgar Lara-Curzio
- Ilja Popovs
- James J Nutaro
- Josh Michener
- Junghoon Chae
- Li-Qi Qiu
- Pratishtha Shukla
- Saurabh Prakash Pethe
- Sudip Seal
- Tolga Aytug
- Travis Humble
- Uday Vaidya
- Xiaohan Yang
- Ahmed Hassen
- Alexei P Sokolov
- Alex Walters
- Ali Passian
- Andrzej Nycz
- Anees Alnajjar
- Austin Carroll
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Bryan Lim
- Carrie Eckert
- Clay Leach
- Eric Wolfe
- Frederic Vautard
- Gerald Tuskan
- Harper Jordan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jayanthi Kumar
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- John F Cahill
- Kaustubh Mungale
- Kyle Davis
- Liangyu Qian
- Meghan Lamm
- Nageswara Rao
- Nance Ericson
- Nidia Gallego
- Pablo Moriano Salazar
- Paul Abraham
- Peeyush Nandwana
- Phillip Halstenberg
- Rangasayee Kannan
- Samudra Dasgupta
- Santa Jansone-Popova
- Serena Chen
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Tomas Grejtak
- Tomonori Saito
- Udaya C Kalluri
- Varisara Tansakul
- Vilmos Kertesz
- Vincent Paquit
- Vlastimil Kunc
- Yang Liu
- Yiyu Wang

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.