Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Peeyush Nandwana
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Chad Steed
- J.R. R Matheson
- James J Nutaro
- Joshua Vaughan
- Junghoon Chae
- Lauren Heinrich
- Pratishtha Shukla
- Rangasayee Kannan
- Sudip Seal
- Travis Humble
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Ali Passian
- Amit Shyam
- Brian Gibson
- Bryan Lim
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Gordon Robertson
- Harper Jordan
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Liam White
- Luke Meyer
- Michael Borish
- Nance Ericson
- Pablo Moriano Salazar
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Samudra Dasgupta
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Tomas Grejtak
- Varisara Tansakul
- Vlastimil Kunc
- William Carter
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.