Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Bryan Maldonado Puente
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- Mahabir Bhandari
- Nolan Hayes
- Radu Custelcean
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Alexander I Wiechert
- Catalin Gainaru
- Charles D Ottinger
- Debangshu Mukherjee
- Gina Accawi
- Gurneesh Jatana
- Jong K Keum
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Md Inzamam Ul Haque
- Mengjia Tang
- Mina Yoon
- Natasha Ghezawi
- Olga S Ovchinnikova
- Peter Wang
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Zhenglai Shen

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Concrete floor slab flatness and levelness are parameters often specified in construction documents that contractors must meet to ensure a high quality of construction. However, the measurement of these parameters is cumbersome and time-consuming.

Making existing buildings more airtight is critical in reducing the nation's energy consumption and carbon output. Most current methods of locating building leakage sites are disruptive to occupants and none of the methods can measure the flow of individual leakage sites.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.