Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Amit Shyam
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Philip Bingham
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Alex Plotkowski
- Andres Marquez Rossy
- Bruce A Pint
- Bryan Lim
- Christopher Fancher
- Costas Tsouris
- Diana E Hun
- Gina Accawi
- Gordon Robertson
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Jay Reynolds
- Jeff Brookins
- Jong K Keum
- Mark M Root
- Michael Kirka
- Mina Yoon
- Obaid Rahman
- Peter Wang
- Philip Boudreaux
- Radu Custelcean
- Steven J Zinkle
- Tim Graening Seibert
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.