Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Anees Alnajjar
- Bryan Maldonado Puente
- Mahabir Bhandari
- Nolan Hayes
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Catalin Gainaru
- Charles D Ottinger
- Christopher Hobbs
- Craig A Bridges
- Eddie Lopez Honorato
- Gina Accawi
- Gurneesh Jatana
- Karen Cortes Guzman
- Kuma Sumathipala
- Mariam Kiran
- Mark M Root
- Matt Kurley III
- Mengjia Tang
- Nageswara Rao
- Natasha Ghezawi
- Peter Wang
- Rodney D Hunt
- Ryan Heldt
- Sheng Dai
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Tyler Gerczak
- Zhenglai Shen

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.