Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ying Yang
- Anees Alnajjar
- Yong Chae Lim
- Zhili Feng
- Alice Perrin
- Jian Chen
- Nageswara Rao
- Rangasayee Kannan
- Ryan Dehoff
- Steven J Zinkle
- Wei Zhang
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alex Plotkowski
- Amit Shyam
- Brian Post
- Bruce A Pint
- Bryan Lim
- Christopher Ledford
- Costas Tsouris
- Craig A Bridges
- Dali Wang
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- Jiheon Jun
- Jong K Keum
- Mariam Kiran
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Sarah Graham
- Sheng Dai
- Sudarsanam Babu
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

The eDICEML digital twin is proposed which emulates networks and hosts of an instrument-computing ecosystem. It runs natively on an ecosystem’s host or as a portable virtual machine.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.