Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Radu Custelcean
- Costas Tsouris
- Anees Alnajjar
- Bruce Moyer
- Gyoung Gug Jang
- Jeffrey Einkauf
- Alexey Serov
- Benjamin L Doughty
- Gs Jung
- Jaswinder Sharma
- Nageswara Rao
- Nikki Thiele
- Santa Jansone-Popova
- Xiang Lyu
- Alexander I Wiechert
- Amit K Naskar
- Beth L Armstrong
- Craig A Bridges
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Ilja Popovs
- James Szybist
- Jayanthi Kumar
- Jennifer M Pyles
- Jonathan Willocks
- Jong K Keum
- Junbin Choi
- Khryslyn G Araño
- Laetitia H Delmau
- Logan Kearney
- Luke Sadergaski
- Mariam Kiran
- Marm Dixit
- Md Faizul Islam
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nihal Kanbargi
- Parans Paranthaman
- Ritu Sahore
- Santanu Roy
- Saurabh Prakash Pethe
- Sheng Dai
- Subhamay Pramanik
- Todd Toops
- Uvinduni Premadasa
- Vera Bocharova
- Yingzhong Ma

The eDICEML digital twin is proposed which emulates networks and hosts of an instrument-computing ecosystem. It runs natively on an ecosystem’s host or as a portable virtual machine.

The invention teaches a method for separating uranium and the transuranic actinides neptunium, plutonium, and americium from nitric acid solutions by co-crystallization upon lowering the temperature from 60 C to 20 C or lower.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.