Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Anees Alnajjar
- Mingyan Li
- Sam Hollifield
- Brian Weber
- Craig A Bridges
- Diana E Hun
- Easwaran Krishnan
- Isaac Sikkema
- James Manley
- Jamieson Brechtl
- Joe Rendall
- Joseph Olatt
- Karen Cortes Guzman
- Kashif Nawaz
- Kevin Spakes
- Kuma Sumathipala
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mariam Kiran
- Mary A Adkisson
- Mengjia Tang
- Muneeshwaran Murugan
- Nageswara Rao
- Oscar Martinez
- Sheng Dai
- T Oesch
- Tomonori Saito
- Zoriana Demchuk

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.