Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Ying Yang
- Alex Plotkowski
- Brian Post
- Joseph Chapman
- Jun Qu
- Muneer Alshowkan
- Rangasayee Kannan
- Ryan Dehoff
- Srikanth Yoginath
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Anees Alnajjar
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- Costas Tsouris
- David S Parker
- Edgar Lara-Curzio
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Lauren Heinrich
- Meghan Lamm
- Michael Kirka
- Pratishtha Shukla
- Radu Custelcean
- Rishi Pillai
- Rob Moore II
- Sergiy Kalnaus
- Steve Bullock
- Steven J Zinkle
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Zhili Feng
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Amy Moore
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brandon Miller
- Brian Sales
- Brian Williams
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Claire Marvinney
- Craig A Bridges
- David J Mitchell
- Dean T Pierce
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Eric Wolfe
- Ethan Self
- Frederic Vautard
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Harper Jordan
- Hsin Wang
- James Klett
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Jian Chen
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Mariam Kiran
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Md Inzamam Ul Haque
- Mike Zach
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Peter Wang
- Priyanshi Agrawal
- Ramanan Sankaran
- Raymond Borges Hink
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Shajjad Chowdhury
- Sheng Dai
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Varisara Tansakul
- Venugopal K Varma
- Vimal Ramanuj
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.

Photonic hyperentanglement involves pairs of photons entangled in multiple degrees of freedom (DoF), which hold promise for quantum communication protocols. However, the frequency DoF has received less attention due to constraints in evaluating such hyperentangled states.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

This disclosure presents a framework to identify critical conditions that an autonomous driving system will encounter on its mission.

Power utilities are increasingly deploying intelligent electronic devices inside and outside substations. Sharing data in substations between utility-owned devices and customer-owned distributed energy resources (DERs) risks the integrity and confidentiality of that data.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.