Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Sheng Dai
- Ali Passian
- Justin West
- Parans Paranthaman
- Peter Wang
- Amit Shyam
- Bishnu Prasad Thapaliya
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Ritin Mathews
- Zhenzhen Yang
- Ahmed Hassen
- Alex Plotkowski
- Andrzej Nycz
- Beth L Armstrong
- Blane Fillingim
- Chris Masuo
- Craig A Bridges
- Joseph Chapman
- Muneer Alshowkan
- Ryan Dehoff
- Shannon M Mahurin
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Anees Alnajjar
- Costas Tsouris
- David Olvera Trejo
- Edgar Lara-Curzio
- Gs Jung
- Gyoung Gug Jang
- Ilja Popovs
- J.R. R Matheson
- James A Haynes
- James J Nutaro
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Li-Qi Qiu
- Michael Kirka
- Pratishtha Shukla
- Radu Custelcean
- Rangasayee Kannan
- Saurabh Prakash Pethe
- Scott Smith
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Tolga Aytug
- Uday Vaidya
- Vlastimil Kunc
- William Carter
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Akash Jag Prasad
- Alexander I Wiechert
- Alexei P Sokolov
- Alex Miloshevsky
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amy Elliott
- Amy Moore
- Andres Marquez Rossy
- Ben Lamm
- Brandon Miller
- Brian Gibson
- Brian Williams
- Bruce Moyer
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Claire Marvinney
- Corson Cramer
- Craig Blue
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Emma Betters
- Eric Wolfe
- Frederic Vautard
- Fred List III
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Greg Corson
- Harper Jordan
- Isha Bhandari
- James Klett
- Jaswinder Sharma
- Jayanthi Kumar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Jong K Keum
- Josh B Harbin
- Jovid Rakhmonov
- Kaustubh Mungale
- Keith Carver
- Liam White
- Luke Meyer
- Mariam Kiran
- Md Inzamam Ul Haque
- Meghan Lamm
- Michael Borish
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Olga S Ovchinnikova
- Philip Bingham
- Phillip Halstenberg
- Ramanan Sankaran
- Raymond Borges Hink
- Richard Howard
- Roger G Miller
- Santa Jansone-Popova
- Sarah Graham
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Guzorek
- Subhamay Pramanik
- Sunyong Kwon
- Tao Hong
- Thomas Butcher
- Tomonori Saito
- Tony L Schmitz
- Trevor Aguirre
- Varisara Tansakul
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Vladimir Orlyanchik
- Wenjun Ge
- William Peter
- Ying Yang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.