Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Alex Plotkowski
- Amit Shyam
- Beth L Armstrong
- Bo Shen
- Gabriel Veith
- Guang Yang
- Joseph Chapman
- Michelle Lehmann
- Muneer Alshowkan
- Praveen Cheekatamarla
- Srikanth Yoginath
- Tomonori Saito
- Vishaldeep Sharma
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Chad Steed
- Costas Tsouris
- Ethan Self
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- James Manley
- Jaswinder Sharma
- Junghoon Chae
- Kyle Gluesenkamp
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Robert Sacci
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Alexey Serov
- Alex Miloshevsky
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Amy Moore
- Andres Marquez Rossy
- Anisur Rahman
- Anna M Mills
- Brandon Miller
- Brian Williams
- Bryan Lim
- Chanho Kim
- Claire Marvinney
- Craig A Bridges
- Debangshu Mukherjee
- Easwaran Krishnan
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Harper Jordan
- Hongbin Sun
- Ilias Belharouak
- Jamieson Brechtl
- Joel Asiamah
- Joel Dawson
- Joe Rendall
- Jong K Keum
- Jovid Rakhmonov
- Jun Yang
- Kashif Nawaz
- Khryslyn G Araño
- Logan Kearney
- Mariam Kiran
- Matthew S Chambers
- Md Inzamam Ul Haque
- Melanie Moses-DeBusk Debusk
- Michael Toomey
- Mina Yoon
- Muneeshwaran Murugan
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nihal Kanbargi
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Ryan Dehoff
- Samudra Dasgupta
- Sheng Dai
- Sunyong Kwon
- Tomas Grejtak
- Varisara Tansakul
- Vera Bocharova
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Xiang Lyu
- Yifeng Hu
- Ying Yang
- Yiyu Wang

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.