Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Radu Custelcean
- Steven Guzorek
- Ali Passian
- Brian Post
- Costas Tsouris
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Vipin Kumar
- Alex Plotkowski
- Amit Shyam
- David Nuttall
- Gyoung Gug Jang
- Jeffrey Einkauf
- Joseph Chapman
- Muneer Alshowkan
- Soydan Ozcan
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Anees Alnajjar
- Benjamin L Doughty
- Blane Fillingim
- Bruce Moyer
- Chad Steed
- Dan Coughlin
- Gs Jung
- James A Haynes
- James J Nutaro
- Jim Tobin
- Junghoon Chae
- Lauren Heinrich
- Nikki Thiele
- Pratishtha Shukla
- Pum Kim
- Santa Jansone-Popova
- Segun Isaac Talabi
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Travis Humble
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Roschli
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Brittany Rodriguez
- Bryan Lim
- Claire Marvinney
- Craig A Bridges
- Craig Blue
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Gary Hahn
- Georges Chahine
- Georgios Polyzos
- Gerry Knapp
- Halil Tekinalp
- Harper Jordan
- Ilja Popovs
- Jaswinder Sharma
- Jayanthi Kumar
- Jennifer M Pyles
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jong K Keum
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Laetitia H Delmau
- Luke Sadergaski
- Mariam Kiran
- Md Faizul Islam
- Md Inzamam Ul Haque
- Merlin Theodore
- Mina Yoon
- Nadim Hmeidat
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Pablo Moriano Salazar
- Parans Paranthaman
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Ryan Dehoff
- Ryan Ogle
- Samudra Dasgupta
- Sana Elyas
- Santanu Roy
- Saurabh Prakash Pethe
- Sheng Dai
- Steve Bullock
- Subhabrata Saha
- Subhamay Pramanik
- Sunyong Kwon
- Tomas Grejtak
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Xianhui Zhao
- Ying Yang
- Yingzhong Ma
- Yiyu Wang

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.