Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Andrzej Nycz
- Ali Passian
- Chris Masuo
- Rama K Vasudevan
- Amit Shyam
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Plotkowski
- Alex Walters
- Joseph Chapman
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Muneer Alshowkan
- Srikanth Yoginath
- Anees Alnajjar
- Blane Fillingim
- Brian Gibson
- Brian Post
- Chad Steed
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Joshua Vaughan
- Junghoon Chae
- Kyle Kelley
- Lauren Heinrich
- Luke Meyer
- Olga S Ovchinnikova
- Pratishtha Shukla
- Radu Custelcean
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Udaya C Kalluri
- William Carter
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Akash Jag Prasad
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Anton Ievlev
- Arpan Biswas
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Bryan Lim
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerd Duscher
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Jong K Keum
- Jovid Rakhmonov
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Neus Domingo Marimon
- Nicholas Richter
- Pablo Moriano Salazar
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Riley Wallace
- Ritin Mathews
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Samudra Dasgupta
- Sheng Dai
- Stephen Jesse
- Sumner Harris
- Sunyong Kwon
- Tomas Grejtak
- Utkarsh Pratiush
- Varisara Tansakul
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Vladimir Orlyanchik
- Wenjun Ge
- Xiaohan Yang
- Ying Yang
- Yiyu Wang

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.