Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- (-) User Facilities (28)
Researcher
- Andrzej Nycz
- Chris Masuo
- Rama K Vasudevan
- Ryan Dehoff
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Beth L Armstrong
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Robert Sacci
- Tomonori Saito
- Vincent Paquit
- Amit Shyam
- Brian Gibson
- Brian Post
- Clay Leach
- Ethan Self
- Jaswinder Sharma
- Joshua Vaughan
- Kashif Nawaz
- Luke Meyer
- Michael Kirka
- Sergiy Kalnaus
- Stephen Jesse
- Udaya C Kalluri
- William Carter
- Adam Stevens
- Ahmed Hassen
- Akash Jag Prasad
- Alexandra Moy
- Alexey Serov
- Alex Plotkowski
- Alice Perrin
- Amanda Musgrove
- Amir K Ziabari
- Amit K Naskar
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anisur Rahman
- Anna M Mills
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Benjamin L Doughty
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Calen Kimmell
- Chanho Kim
- Chelo Chavez
- Chengyun Hua
- Christopher Fancher
- Christopher Ledford
- Christopher Rouleau
- Chris Tyler
- Costas Tsouris
- David Nuttall
- Debangshu Mukherjee
- Gabor Halasz
- Georgios Polyzos
- Gerd Duscher
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ilias Belharouak
- Ivan Vlassiouk
- J.R. R Matheson
- James Haley
- Jamieson Brechtl
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- Jiaqiang Yan
- John Potter
- Jong K Keum
- Jun Yang
- Kai Li
- Khryslyn G Araño
- Kyle Gluesenkamp
- Liam Collins
- Logan Kearney
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matthew S Chambers
- Md Inzamam Ul Haque
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Neus Domingo Marimon
- Nickolay Lavrik
- Nihal Kanbargi
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Petro Maksymovych
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Utkarsh Pratiush
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- Vipin Kumar
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiang Lyu
- Xiaobing Liu
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.