Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- (-) User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Yongtao Liu
- Ahmed Hassen
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Ying Yang
- Adam Willoughby
- Amit Shyam
- Bruce A Pint
- Edgar Lara-Curzio
- J.R. R Matheson
- Joshua Vaughan
- Kashif Nawaz
- Lauren Heinrich
- Michael Kirka
- Rishi Pillai
- Stephen Jesse
- Steven J Zinkle
- Vincent Paquit
- Vlastimil Kunc
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Bogdan Dryzhakov
- Brandon Johnston
- Brian Fricke
- Brian Gibson
- Cameron Adkins
- Charles Hawkins
- Christopher Fancher
- Christopher Ledford
- Christopher Rouleau
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Craig Blue
- David Nuttall
- David Olvera Trejo
- Debangshu Mukherjee
- Eric Wolfe
- Frederic Vautard
- Gerd Duscher
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- Jiheon Jun
- John Lindahl
- John Potter
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Liam White
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Marie Romedenne
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Meghan Lamm
- Michael Borish
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Nidia Gallego
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Philip Bingham
- Priyanshi Agrawal
- Radu Custelcean
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Scott Smith
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Steven Guzorek
- Steven Randolph
- Sumner Harris
- Tim Graening Seibert
- Tolga Aytug
- Utkarsh Pratiush
- Vipin Kumar
- Weicheng Zhong
- Wei Tang
- William Carter
- William Peter
- Xiang Chen
- Xiaobing Liu
- Yan-Ru Lin
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.