Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- (-) User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Rama K Vasudevan
- Ryan Dehoff
- Vipin Kumar
- Brian Post
- David Nuttall
- Sergei V Kalinin
- Yongtao Liu
- Dan Coughlin
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Nadim Hmeidat
- Olga S Ovchinnikova
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Adam Stevens
- Brittany Rodriguez
- Jim Tobin
- Kashif Nawaz
- Michael Kirka
- Pum Kim
- Segun Isaac Talabi
- Stephen Jesse
- Subhabrata Saha
- Sudarsanam Babu
- Uday Vaidya
- Umesh N MARATHE
- Vincent Paquit
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Chengyun Hua
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Craig Blue
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gabor Halasz
- Georges Chahine
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jeremy Malmstead
- Jewook Park
- Jiaqiang Yan
- John Lindahl
- Jong K Keum
- Josh Crabtree
- Julian Charron
- Kai Li
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Merlin Theodore
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Petro Maksymovych
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Ryan Ogle
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Sarah Graham
- Steven Randolph
- Sumner Harris
- Thomas Feldhausen
- Utkarsh Pratiush
- Venkatakrishnan Singanallur Vaidyanathan
- William Peter
- Xianhui Zhao
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

Wire arc additive manufacturing has limited productivity and casting processes require complex molds that are expensive and time-consuming to produce.