Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- (-) User Facilities (28)
Researcher
- Soydan Ozcan
- Vlastimil Kunc
- Ahmed Hassen
- Halil Tekinalp
- Meghan Lamm
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Umesh N MARATHE
- Vipin Kumar
- Yongtao Liu
- Amit K Naskar
- Dan Coughlin
- David Nuttall
- Katie Copenhaver
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Steven Guzorek
- Uday Vaidya
- Alex Roschli
- Beth L Armstrong
- Brian Post
- Georges Chahine
- Jaswinder Sharma
- Kashif Nawaz
- Logan Kearney
- Matt Korey
- Michael Kirka
- Michael Toomey
- Nadim Hmeidat
- Nihal Kanbargi
- Pum Kim
- Sanjita Wasti
- Stephen Jesse
- Steve Bullock
- Tyler Smith
- Vincent Paquit
- Xianhui Zhao
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alex Plotkowski
- Alice Perrin
- Amber Hubbard
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arit Das
- Arpan Biswas
- Benjamin Lawrie
- Benjamin L Doughty
- Ben Lamm
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brittany Rodriguez
- Cait Clarkson
- Chengyun Hua
- Christopher Bowland
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Debangshu Mukherjee
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jeremy Malmstead
- Jesse Heineman
- Jewook Park
- Jiaqiang Yan
- Jim Tobin
- Jong K Keum
- Josh Crabtree
- Kai Li
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Petro Maksymovych
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Santanu Roy
- Sarah Graham
- Segun Isaac Talabi
- Shajjad Chowdhury
- Steven Randolph
- Subhabrata Saha
- Sudarsanam Babu
- Sumit Gupta
- Sumner Harris
- Tolga Aytug
- Utkarsh Pratiush
- Uvinduni Premadasa
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.