Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Ryan Dehoff
- Soydan Ozcan
- Meghan Lamm
- Rama K Vasudevan
- Vlastimil Kunc
- Ahmed Hassen
- Halil Tekinalp
- Sergei V Kalinin
- Umesh N MARATHE
- Yongtao Liu
- Katie Copenhaver
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Singanallur Venkatakrishnan
- Steven Guzorek
- Uday Vaidya
- Vincent Paquit
- Vipin Kumar
- Alex Roschli
- Amir K Ziabari
- Beth L Armstrong
- Brian Post
- Dan Coughlin
- David Nuttall
- Diana E Hun
- Georges Chahine
- Kashif Nawaz
- Matt Korey
- Michael Kirka
- Philip Bingham
- Philip Boudreaux
- Pum Kim
- Stephen Jesse
- Stephen M Killough
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alex Plotkowski
- Alice Perrin
- Amber Hubbard
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Bryan Maldonado Puente
- Cait Clarkson
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Corey Cooke
- Costas Tsouris
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gerd Duscher
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jeremy Malmstead
- Jesse Heineman
- Jewook Park
- Jim Tobin
- Jong K Keum
- Josh Crabtree
- Kai Li
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Nadim Hmeidat
- Neus Domingo Marimon
- Nickolay Lavrik
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Ryan Kerekes
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sally Ghanem
- Sana Elyas
- Sanjita Wasti
- Sarah Graham
- Segun Isaac Talabi
- Shajjad Chowdhury
- Steve Bullock
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Tolga Aytug
- Tyler Smith
- Utkarsh Pratiush
- William Peter
- Xianhui Zhao
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.