Filter Results
Related Organization
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- (-) Biological and Environmental Systems Science Directorate (29)
- (-) User Facilities (28)
Researcher
- Adam M Guss
- Rama K Vasudevan
- Ryan Dehoff
- Josh Michener
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Liangyu Qian
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Vincent Paquit
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Carrie Eckert
- Clay Leach
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kashif Nawaz
- Kuntal De
- Michael Kirka
- Serena Chen
- Soydan Ozcan
- Stephen Jesse
- Udaya C Kalluri
- Vilmos Kertesz
- Xianhui Zhao
- Xiaohan Yang
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Roschli
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Brian Sanders
- Chengyun Hua
- Chris Masuo
- Christopher Ledford
- Christopher Rouleau
- Costas Tsouris
- Dali Wang
- David Nuttall
- Debangshu Mukherjee
- Debjani Pal
- Erin Webb
- Evin Carter
- Gabor Halasz
- Gerald Tuskan
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Jewook Park
- Jian Chen
- Jiaqiang Yan
- Joanna Tannous
- Jong K Keum
- Kai Li
- Kitty K Mccracken
- Kyle Davis
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Mina Yoon
- Nandhini Ashok
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Paul Abraham
- Paula Cable-Dunlap
- Peeyush Nandwana
- Petro Maksymovych
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sanjita Wasti
- Sarah Graham
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Tyler Smith
- Utkarsh Pratiush
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- Wei Zhang
- William Alexander
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang
- Yukinori Yamamoto
- Zhili Feng
- Zhiming Gao

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

This technology can activate gene expression in a time- and dose-dependent manner in the thermophilic bacterium Clostridium thermocellum. This system will mediate inducible gene expression for strain engineering in C.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.