Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- (-) Biological and Environmental Systems Science Directorate (23)
- (-) User Facilities (27)
Researcher
- Adam M Guss
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Yongtao Liu
- Amit K Naskar
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Vincent Paquit
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Clay Leach
- Jaswinder Sharma
- Josh Michener
- Kashif Nawaz
- Kuntal De
- Logan Kearney
- Michael Kirka
- Michael Toomey
- Nihal Kanbargi
- Stephen Jesse
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Roschli
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arit Das
- Arpan Biswas
- Austin Carroll
- Benjamin L Doughty
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Brian Sanders
- Chris Masuo
- Christopher Bowland
- Christopher Ledford
- Christopher Rouleau
- Costas Tsouris
- Daniel Jacobson
- David Nuttall
- Debangshu Mukherjee
- Debjani Pal
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gerald Tuskan
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Ilia N Ivanov
- Isaiah Dishner
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Jewook Park
- Joanna Tannous
- John F Cahill
- Jong K Keum
- Kai Li
- Kitty K Mccracken
- Kyle Davis
- Kyle Gluesenkamp
- Liam Collins
- Liangyu Qian
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Mina Yoon
- Nandhini Ashok
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Paul Abraham
- Paula Cable-Dunlap
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Santanu Roy
- Sarah Graham
- Serena Chen
- Singanallur Venkatakrishnan
- Soydan Ozcan
- Steven Randolph
- Sudarsanam Babu
- Sumit Gupta
- Sumner Harris
- Tyler Smith
- Utkarsh Pratiush
- Uvinduni Premadasa
- Vera Bocharova
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Xiaobing Liu
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.