Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- (-) User Facilities (27)
Researcher
- Radu Custelcean
- Rama K Vasudevan
- Ryan Dehoff
- Costas Tsouris
- Sergei V Kalinin
- Yongtao Liu
- Gyoung Gug Jang
- Jeffrey Einkauf
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Ying Yang
- Adam Willoughby
- Benjamin L Doughty
- Bruce A Pint
- Bruce Moyer
- Edgar Lara-Curzio
- Gs Jung
- Kashif Nawaz
- Michael Kirka
- Nikki Thiele
- Rishi Pillai
- Santa Jansone-Popova
- Stephen Jesse
- Steven J Zinkle
- Vincent Paquit
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Blane Fillingim
- Bogdan Dryzhakov
- Brandon Johnston
- Brian Fricke
- Brian Post
- Charles Hawkins
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- David Nuttall
- Debangshu Mukherjee
- Eric Wolfe
- Frederic Vautard
- Gerd Duscher
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ilja Popovs
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jayanthi Kumar
- Jennifer M Pyles
- Jewook Park
- Jiheon Jun
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Mahshid Ahmadi-Kalinina
- Marie Romedenne
- Marti Checa Nualart
- Md Faizul Islam
- Md Inzamam Ul Haque
- Meghan Lamm
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Nidia Gallego
- Ondrej Dyck
- Parans Paranthaman
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Santanu Roy
- Sarah Graham
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Steven Randolph
- Subhamay Pramanik
- Sudarsanam Babu
- Sumner Harris
- Tim Graening Seibert
- Tolga Aytug
- Utkarsh Pratiush
- Uvinduni Premadasa
- Vera Bocharova
- Vipin Kumar
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiaobing Liu
- Yan-Ru Lin
- Yingzhong Ma
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.