Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- (-) User Facilities (28)
Researcher
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Yongtao Liu
- Alex Plotkowski
- Blane Fillingim
- Brian Post
- Jun Qu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Michael Kirka
- Olga S Ovchinnikova
- Rangasayee Kannan
- Sudarsanam Babu
- Ying Yang
- Yong Chae Lim
- Zhili Feng
- Alice Perrin
- Christopher Ledford
- Corson Cramer
- James A Haynes
- Jian Chen
- Kashif Nawaz
- Lauren Heinrich
- Meghan Lamm
- Stephen Jesse
- Steve Bullock
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Vincent Paquit
- Wei Zhang
- Yousub Lee
- Adam Stevens
- Ahmed Hassen
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Ben Lamm
- Bogdan Dryzhakov
- Brian Fricke
- Bruce A Pint
- Bryan Lim
- Chengyun Hua
- Christopher Fancher
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Dali Wang
- David J Mitchell
- David Nuttall
- Dean T Pierce
- Debangshu Mukherjee
- Ethan Self
- Gabor Halasz
- Gabriel Veith
- Gerd Duscher
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- James Klett
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jewook Park
- Jiaqiang Yan
- Jiheon Jun
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Kai Li
- Khryslyn G Araño
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Matthew S Chambers
- Md Inzamam Ul Haque
- Mina Yoon
- Nancy Dudney
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peter Wang
- Petro Maksymovych
- Philip Bingham
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Steven J Zinkle
- Steven Randolph
- Sumner Harris
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Utkarsh Pratiush
- Venkatakrishnan Singanallur Vaidyanathan
- Venugopal K Varma
- Vipin Kumar
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiaobing Liu
- Yan-Ru Lin
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato
- Zhiming Gao

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.