Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Chris Tyler
- Soydan Ozcan
- Justin West
- Meghan Lamm
- Rama K Vasudevan
- Ryan Dehoff
- Vlastimil Kunc
- Ahmed Hassen
- Halil Tekinalp
- Ritin Mathews
- Sergei V Kalinin
- Umesh N MARATHE
- Yongtao Liu
- Brian Post
- Katie Copenhaver
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Steven Guzorek
- Uday Vaidya
- Vipin Kumar
- Alex Roschli
- Beth L Armstrong
- Dan Coughlin
- David Nuttall
- David Olvera Trejo
- Georges Chahine
- J.R. R Matheson
- Jaydeep Karandikar
- Jesse Heineman
- Kashif Nawaz
- Matt Korey
- Michael Kirka
- Pum Kim
- Scott Smith
- Stephen Jesse
- Vincent Paquit
- Adam Stevens
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Alex Plotkowski
- Alice Perrin
- Amber Hubbard
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Gibson
- Cait Clarkson
- Calen Kimmell
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Debangshu Mukherjee
- Emma Betters
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gerd Duscher
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jeremy Malmstead
- Jewook Park
- Jim Tobin
- John Potter
- Jong K Keum
- Josh B Harbin
- Josh Crabtree
- Kai Li
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Nadim Hmeidat
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Sanjita Wasti
- Sarah Graham
- Segun Isaac Talabi
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Tolga Aytug
- Tony L Schmitz
- Tyler Smith
- Utkarsh Pratiush
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.