Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Rama K Vasudevan
- Ryan Dehoff
- Ritin Mathews
- Sergei V Kalinin
- Yongtao Liu
- Alex Plotkowski
- Amit Shyam
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Srikanth Yoginath
- Alice Perrin
- Anees Alnajjar
- Brian Post
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- James J Nutaro
- Jaydeep Karandikar
- Kashif Nawaz
- Michael Kirka
- Pratishtha Shukla
- Scott Smith
- Sergiy Kalnaus
- Stephen Jesse
- Sudip Seal
- Sumit Bahl
- Vincent Paquit
- Ying Yang
- Adam Stevens
- Ahmed Hassen
- Akash Jag Prasad
- Ali Passian
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Beth L Armstrong
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Gibson
- Calen Kimmell
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Craig A Bridges
- David Nuttall
- Debangshu Mukherjee
- Emma Betters
- Georgios Polyzos
- Gerd Duscher
- Gerry Knapp
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jaswinder Sharma
- Jesse Heineman
- Jewook Park
- Joel Asiamah
- Joel Dawson
- John Potter
- Jong K Keum
- Josh B Harbin
- Jovid Rakhmonov
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Sheng Dai
- Singanallur Venkatakrishnan
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Sunyong Kwon
- Tony L Schmitz
- Utkarsh Pratiush
- Varisara Tansakul
- Vipin Kumar
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.