Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Information Technology Services Directorate (3)
Researcher
- Ryan Dehoff
- Michael Kirka
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Annetta Burger
- Blane Fillingim
- Brian Post
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Christopher Ledford
- Clay Leach
- David Nuttall
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- James Gaboardi
- James Haley
- Jason Jarnagin
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- Kevin Spakes
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Lilian V Swann
- Liz McBride
- Luke Sadergaski
- Mark Provo II
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Rob Root
- Roger G Miller
- Sam Hollifield
- Sarah Graham
- Sudarsanam Babu
- Todd Thomas
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiuling Nie
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.