Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Michael Kirka
- Vincent Paquit
- William Carter
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Benjamin Manard
- Blane Fillingim
- Brian Post
- Bruce Hannan
- Charles F Weber
- Christopher Ledford
- Clay Leach
- Costas Tsouris
- David Nuttall
- Govindarajan Muralidharan
- Isaac Sikkema
- James Haley
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Joshua Vaughan
- Kunal Mondal
- Loren L Funk
- Mahim Mathur
- Matt Vick
- Mingyan Li
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Polad Shikhaliev
- Rangasayee Kannan
- Roger G Miller
- Rose Montgomery
- Sam Hollifield
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Theodore Visscher
- Thomas R Muth
- Vandana Rallabandi
- Venugopal K Varma
- Vipin Kumar
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Yacouba Diawara
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.