Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Michael Kirka
- Sergiy Kalnaus
- Vincent Paquit
- William Carter
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Bruce Hannan
- Christopher Ledford
- Clay Leach
- David Nuttall
- Georgios Polyzos
- James Haley
- Jaswinder Sharma
- Joshua Vaughan
- Loren L Funk
- Nancy Dudney
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Polad Shikhaliev
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Theodore Visscher
- Vipin Kumar
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Yacouba Diawara
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.