Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Adam Willoughby
- Michael Kirka
- Rishi Pillai
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Callie Goetz
- Charles Hawkins
- Christopher Hobbs
- Christopher Ledford
- Clay Leach
- David Nuttall
- Eddie Lopez Honorato
- Fred List III
- James Haley
- Jiheon Jun
- Keith Carver
- Marie Romedenne
- Matt Kurley III
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Priyanshi Agrawal
- Rangasayee Kannan
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Ryan Heldt
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Thomas Butcher
- Tyler Gerczak
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance