Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Adam Willoughby
- Michael Kirka
- Rishi Pillai
- Vincent Paquit
- Viswadeep Lebakula
- Aaron Myers
- Adam Stevens
- Ahmed Hassen
- Alexandre Sorokine
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Annetta Burger
- Blane Fillingim
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Christopher Ledford
- Clay Leach
- Clinton Stipek
- Daniel Adams
- David Nuttall
- Debraj De
- Eve Tsybina
- Gautam Malviya Thakur
- James Gaboardi
- James Haley
- Jesse McGaha
- Jessica Moehl
- Jiheon Jun
- Justin Cazares
- Kevin Sparks
- Liz McBride
- Marie Romedenne
- Matt Larson
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Philipe Ambrozio Dias
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Taylor Hauser
- Todd Thomas
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiuling Nie
- Yan-Ru Lin
- Ying Yang
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

MAPSTER is a lightweight software package that automatically searches deployed laptops for geospatial data and complies metadata (GPS coordinates, file size, etc) at a central checkpoint.