Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Ryan Dehoff
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Amit K Naskar
- Craig A Bridges
- Edgar Lara-Curzio
- Shannon M Mahurin
- Ahmed Hassen
- Frederic Vautard
- Ilja Popovs
- Jaswinder Sharma
- Li-Qi Qiu
- Logan Kearney
- Michael Kirka
- Michael Toomey
- Nihal Kanbargi
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Vincent Paquit
- Vlastimil Kunc
- Adam Stevens
- Alexei P Sokolov
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Bruce Moyer
- Christopher Bowland
- Christopher Ledford
- Clay Leach
- David Nuttall
- Eric Wolfe
- Felix L Paulauskas
- Holly Humphrey
- James Haley
- Jayanthi Kumar
- Kaustubh Mungale
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Phillip Halstenberg
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Santa Jansone-Popova
- Santanu Roy
- Sarah Graham
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Subhamay Pramanik
- Sudarsanam Babu
- Sumit Gupta
- Tao Hong
- Tomonori Saito
- Uvinduni Premadasa
- Vera Bocharova
- Vipin Kumar
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.