Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Lawrence {Larry} M Anovitz
- Michael Kirka
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Andrew G Stack
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- Dave Willis
- David Nuttall
- James Haley
- Juliane Weber
- Luke Chapman
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peng Yang
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sai Krishna Reddy Adapa
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Sydney Murray III
- Vasilis Tzoganis
- Vasiliy Morozov
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

The technology describes an electron beam in a storage ring as a quantum computer.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.