Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Lawrence {Larry} M Anovitz
- Venugopal K Varma
- Mahabir Bhandari
- Michael Kirka
- Vincent Paquit
- Ying Yang
- Adam Aaron
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Andrew G Stack
- Blane Fillingim
- Brian Post
- Charles D Ottinger
- Christopher Ledford
- Clay Leach
- David Nuttall
- Govindarajan Muralidharan
- James Haley
- Juliane Weber
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peng Yang
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Rose Montgomery
- Sai Krishna Reddy Adapa
- Sarah Graham
- Sergey Smolentsev
- Singanallur Venkatakrishnan
- Steven J Zinkle
- Sudarsanam Babu
- Thomas R Muth
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yanli Wang
- Yukinori Yamamoto
- Yutai Kato

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.