Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Ryan Dehoff
- Ahmed Hassen
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Amit Shyam
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Vincent Paquit
- Vlastimil Kunc
- Ying Yang
- Yousub Lee
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Andres Marquez Rossy
- Ben Lamm
- Beth L Armstrong
- Brian Gibson
- Bruce A Pint
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Craig Blue
- David Nuttall
- David Olvera Trejo
- Gordon Robertson
- Isha Bhandari
- James Haley
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Liam White
- Luke Meyer
- Meghan Lamm
- Michael Borish
- Patxi Fernandez-Zelaia
- Philip Bingham
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Scott Smith
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Steven Guzorek
- Steven J Zinkle
- Tim Graening Seibert
- Tolga Aytug
- Vipin Kumar
- Weicheng Zhong
- Wei Tang
- William Carter
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yanli Wang
- Yukinori Yamamoto
- Yutai Kato

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.