Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Michael Kirka
- Soydan Ozcan
- Vincent Paquit
- Xianhui Zhao
- Yaosuo Xue
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Erin Webb
- Evin Carter
- Fei Wang
- Halil Tekinalp
- James Haley
- Jeremy Malmstead
- Kitty K Mccracken
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Phani Ratna Vanamali Marthi
- Philip Bingham
- Rafal Wojda
- Rangasayee Kannan
- Roger G Miller
- Sanjita Wasti
- Sarah Graham
- Sreenivasa Jaldanki
- Sudarsanam Babu
- Suman Debnath
- Sunil Subedi
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yonghao Gui
- Yukinori Yamamoto

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.